普通热泵在低温工况下运行主要存在以下问题:
制热能力 压缩机的吸气流量和蒸发温度是成正比的,环境温度越低吸气流量越低,制热能力越差。另外,当蒸发温度降低的时候,电机的发热是不变的,还是那么多,而系统质量流量却在下降。
假如蒸发温度在-5℃时,质量流量是50KG/S,当蒸发温度降到-30℃时,质量流量有可能只剩下20KG/S了。这个时候电机的发热量是几乎没什么变化的,但用来冷却电机的制冷剂的流量却减少了,对应的每一公斤制冷剂的加热量会增加,因此排气温度也会升高。吸气受热后密度会下降,相当于实际上制冷剂的流量下降的更多,这也是为什么温度越低制热能力会越来越差的原因。
运行宽度 任何产品在设计时都有一个安全区间,就是说在这个区间内运行是安全的,而一旦超出了这个区间范围,则可能出现意外。常规热泵的压缩机在设计时也有一个安全的运行范围,如果在蒸发温度较低的环境中运行,可能一降温马上就不能工作了。这就不仅仅是可靠性的问题了,而是能不能用的问题。
而低温热泵却不同,低温热泵之所以能在更低环温下正常运行,就是相应地解决了常规热泵遇到的由于蒸发温度低、吸气流量少、压缩比大、排气温度高导致的制热量不足、COP低及运行不稳定。
在内部结构设计上。蒸发温度越低,压缩比越大,而如果要在更低蒸发温度下工作,压缩比就要做的更大。所以,低温热泵压缩机的涡旋盘型线会设计的更大一些。可能普通热泵压缩比只做到2.3左右,但低温热泵会做的更高一些。这样就意味着在蒸发温度更低的情况下,低温热泵能够得到更高的工作效率,也能够有更低蒸发温度的工作范围,适应温差较大的工作环境。
而且低温热泵采用喷气增焓技术。喷气增焓就相当于在蒸发温度特别低的时候,通过外界冷媒引入进来,同时冷凝器的支路分成两路——一路用来过冷主回路的制冷剂,增加过冷度,扩大与环境温度的换热温差,提升制热量;另外一路用来冷却主回路的冷媒,减少涡旋盘的压缩比。这样就可以通过喷射进来的新压力降低压缩腔的实际吸气压力,压缩比也减少了,所以功耗、排气温度及功率都会有显著下降。同时,制热量也会提升,因为制热量的提升就来源于主回路过冷度的增加。
这样一来,由于有更低蒸发温度工作范围,并且在低蒸发温度时还保持着较高的制热量,所以低温热泵在温度较低的北方地区也能够稳定、可靠运行,COP也比较高。